
Spring 2018 Research Project Proposal
Laboratory for Embedded Machines and Ubiquitous Robots

University of California, Los Angeles
Quentin Truong

 ​Introduction
Robotics is widely applicable to our everyday lives; however, despite their utility,

the design and fabrication of robots is largely inaccessible to the general public due to a
lack of easy-to-use design and fabrication tools. The Robot Compiler, RoCo, addresses
this need through its intuitive design scheme and ability to move from design to
fabrication.

Problem

As RoCo continues to grow as an open source project, the need to manage
complexity, maintain functionality, and ensure extensibility will become more and more
critical. Without practices in place to address these issues, RoCo’s growth will
eventually be prohibited by its own complexity.

Currently, RoCo’s limited documentation and lack of runnable test scripts creates
unnecessary complexity for developers. In particular, the limited documentation creates
a steep learning-curve for new developers, hindering RoCo’s capacity to operate
successfully as an open-source project. Without a quick reference to the software’s
abstractions and implementations, developers are left without reasonable means to
understand how the system actually runs. Moreover, the lack of test scripts increases
the complexity of maintaining and extending RoCo. Without testing, developers are
unable to ensure that newly added features do not break pre-existing ones.

Solution

There are many basic software development practices applied in nearly all
projects to help manage complexity, maintain functionality, and ensure extensibility.
Among these practices are documentation and unit testing. For this project,
documentation will be hosted on the public GitHub Wiki so that any developer may
quickly find and access necessary information. Unit testing will be built using the
standard Python unittest framework. The Python unittest framework is chosen over
alternatives for its ability to share setup between test cases, aggregate test cases into
test suites, and maintain independence of test cases from source code.

Once the documentation and test cases for RoCo have been written, new
developers will be able to quickly learn the codebase, integrate new features, and
ensure the functionality of the system. The benefits of reducing RoCo’s complexity will
extend beyond RoCo itself; as RoCo develops, we will learn the requirements and

abstractions necessary for any easy-to-use robotics development and fabrication
system.

Figure 1: RoCo vs. RTD Documentation:​ The above panels show the current state of
RoCo documentation (left) and an example of the style of documentation we will
progress towards (right).

Breakdown of Goals
- Prepare RoCo for future development

- Document abstraction model
- Further help developers learn/understand RoCo
- Ensure future features are built in extensible ways

- Document classes/functionalities
- Helps developers to learn/understand RoCo
- Serve as reference for developers

- Write unit tests
- Ensure functionality of RoCo

Breakdown of Tasks
- Create visual overview of abstraction model

- Logical boundaries of each phase
- Phases (design vs fabrication)
- Data flow

- Create visual overview of class relationships
- Inheritance relationships

- Composition relationships
For each level,

For each class,
- Document classes

- Purpose
- Explain key terms/link to them
- How it affects data
- Relationship to other classes

- Document functions
- Purpose
- Parameters
- Return values

- Unit test functions
- Track bugs as necessary

Extra Tasks
- GitHub Badges, Continuous Integration Setup, Semantic Versioning, Visual Overview
of Data Flow, Pylint

Tools
- reStructuredText format with Sphinx and Read the Docs Theme

- Sphinx - https://github.com/sphinx-doc/sphinx
- Sphinx_rtd_theme - https://github.com/rtfd/sphinx_rtd_theme

- Python unittest
- GitHub Issue Tracker
- Google Python Style Guide

Project Timeline
Week: Tasks to be completed by the start of next week
02-25: Decide on tasks, Decide on tools, Write project proposal, Establish timeline, Find
relevant research papers, Setup Sphinx, Integrate RTD theme
03-04: Gather abstraction model information
03-11: Turn abstraction model information into graphic
03-18: Gather class relationships information
03-25: Turn class relationships information into graphic
04-01: Document, unit test, cleanup docstrings/imports/formatting for Parameterized
and Variable
04-08: Document, unit test, cleanup docstrings/imports/formatting for Composable and
Connection

04-15: Document, unit test, cleanup docstrings/imports/formatting for Interface and Port
04-22: Document, unit test, cleanup docstrings/imports/formatting for Component and
ContainerComposable
04-29: Document, unit test, cleanup docstrings/imports/formatting for
ElectricalComposable and VirtualComposable
05-06: Document, unit test, cleanup docstrings/imports/formatting for CodePort and
EdgePort
05-13: Document, unit test, cleanup docstrings/imports/formatting for ElectricalPort and
MountPort
05-20: Document, unit test, cleanup docstrings/imports/formatting for SixDOFPort and
CodeComponent
05-27: Document, unit test, cleanup docstrings/imports/formatting for
ElectricalComponent and MechanicalComponent
06-03: Document, unit test, cleanup docstrings/imports/formatting for NodeMCU
(Android.py) and Cutout
06-10: Document, unit test, cleanup docstrings/imports/formatting for Header and
NodeMCU (node_mcu.py)
06-17: Document, unit test, cleanup docstrings/imports/formatting for CodeContainer
and ElectricalContainer
06-24: Document, unit test, cleanup docstrings/imports/formatting for CodeComposable
07-01: Document, unit test, cleanup docstrings/imports/formatting for additional classes
07-08: Document, unit test, cleanup docstrings/imports/formatting for additional classes
07-15: Document, unit test, cleanup docstrings/imports/formatting for additional classes
07-22: Document, unit test, cleanup docstrings/imports/formatting for additional classes
07-29: Document, unit test, cleanup docstrings/imports/formatting for additional classes
08-05: Document, unit test, cleanup docstrings/imports/formatting for additional classes
08-12: Document, unit test, cleanup docstrings/imports/formatting for additional classes
08-19: Document, unit test, cleanup docstrings/imports/formatting for additional classes

